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THE HEATING WITH GAS OF A FIXED TWO-COMPONENT LAYER WITH VARIOUS

INITIAL TEMPERATURES
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UDC 536.244

We have derived the equations for the change in temperatures in a
nonmoving layer consisting of two materials with various thermo-
physical properties and initial temperatures. An approximate method
is proposed for the solution of the problem, based on the utilization
of the Schumann graph data.

It is standard practice in blast-furnace operations
to charge the furnace with cold coke and hot agglom-
erate. The temperature of the latter occasionally ex-
ceeds 500° C. The heat treatment of the first batch may
be regarded in the combined charging of the agglom-
erate and coke as the gas heating of a two-component
layer with various initial temperatures. The quanti-
tative relationships of heattransfer for this and similar
cases can be found after the solution of the following
problem.

A fixed bed [layer] of height H, consisting of two
components with nonidentical thermophysical prop-
erties which remain constant during the heating pro-
cess, is flushed by a gas having a constant temper-
ature at the inlet to the layer. One of the materials
prior to the flushing exhibits a temperature different
from zero. In view of this circumstance, and also be-
cause of the fact that the rate of heating for each of
the materials is defined by the magnitude of the sur-
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Fig. 1. Plot for determining temperatures of gas and
charge in fixed bed.

face referred to a unit of material heat capacity at
constant volume, a mutual exchange of heat arises
between the two materials, described in the general
case by the laws of radiation. The problem consid-
ered below is linearized by replacing with its constant
value the coefficient of mutual heat transfer which
changes during the heating process [1].

With this linearization of the boundary condition in
the formulated problem, it is necessary to find the
time variations in the temperatures of each of the ma-
terials and of the gas at any level within the layer.
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Fig. 2. Temperature history of
agglomerate (1), gas (2), and
coke (3).

The magnitude of the internal thermal resistance of
the particles making up the layer can be neglected,
since in the majority of cases the value of the Biot
number for these particles does not exceed 0.5.

Examining an elementary layer of height dH, we
derive the following equations describing the transfer
of heat between the gas and the materials:

for the first material

a

37 :(tg_t1)+A(t2“t1)v (1)

for the second material

0ty 1
=(lg—1ty) —A(ly—1) — 2
mnaz (tg 2) (2 1) n ’ ( )
for the gas flow
ot
- Iy =(tg‘"t1)+(tr‘t2) n, (3)

and the boundary conditions of the problem

Y=0, to=T, “4)

g
Z=0, t,=0, L=t (5)

The over-all solution for the problem will be sought
in the form of sums of solutions, and namely:

by =t 4 £}, L=t,+ £, tg=ty+14, (6)
t] in these satisfies the boundary conditions

Y =0, té-T and Z=0, t,=1f,=0; (7Y
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and tY
Y=0,fz=0and Z=0, =0, {;=t, (8)

It is natural that t] and t}satisfy Eqgs. (1)—(3).

The solution of the problem satisfying boundary
conditions (7) was derived'byus in [1];itis the purpose
of the present paper to seek a solution which would
satisfy conditions (8).
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Fig. 3. Temperature history ob-
tained as a result of calculations
according to the proposed methods
(a) and the usually applied methods
(b): 1) charge (average weight); 2)

gas.
Applying the Laplace transform in Z to Eqgs. (1) and
(2), with consideration of (8), we obtain
P = G- ATH—T), )
pla—ty =mn (fg—t)— Am(H—1), 2"
whence 7, and %5 is found as a function of Z"g:
7 _ To(p + mn + Amn + Am) + At 9
YU o+ 15 A) (p Fma & Am) — Am’
7= fglmn(p+ 1+ A)+ Aml+ (p + 1 + A)¢, (10)

P+ 14+ A)(p + mn 4+ Am)— A*m

The representation of the gas-flow equation after
the transformations, with consideration of expressions
(9) and (10), assumes the form -

2 ) b .
_dt ( __* ) Lo
dy‘ I+n PR, p—R, )&
_A(l+nm)+n(l+p
(p—R)(p—Ry)

2 (11)

where

(k~|—R)(l+n2m) b— (B + Ry (1 + n*m)

R Rz RZ_RI
o _mn(l+n)+ Am(l 4 np '
- 14+ n?m !
1,,,=\-—-,~12~ (1+A+ Am+mn) +

:‘é‘ VI + A+ Am 4 mn)t — & [mn + Am(1+ n)] .

The solution of (11) after satisfaction of boundary
conditions (8) is as follows:
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Ad4+n+npp+1
pit+mp+im+Dn+A+An)

_ e b ] 9
x{l exp[ (l-{n ll—’;———k—l P*‘Rz)y][. (12)

t,-—t

The original of the fractional factor in (12), or what
is the same, of the first term, can be found by using
the theorem of expansion. With this aim in mind, we
have to determine the roots of the denominator of the

fraction, and these, as is not difficult to see, are equal
to py=0and p, =— m: 11 (n + A + An). Further,
n

applying the theorem of multiplication, we obtain the
expression for the original of the function t}:

t—t[ 1 l —mn eBz]__
g 1+m  (1+m( +n)
z
—t, | . l=mn_
(5 s )

x(nd- A+ An)BF de —

n
—t, ——— t (Y, 2), 13
e Y ) 13)

1+

1 +
known solution of (1)~(3) for boundary conditions
(7)and T = 1 [1].

where B = — (n+ A+ An),and ¢, (Y Z)is the

In this connection it becomes possible to write the
over-all solution in the form of the sum of two so-
lutions (see (6)). In final form the equation describing
the changes in gas temperature with time and in layer
height will be:

tg’—‘-‘to [ 1 _ 1—mn eBZ]—
l+m 1+m1+n

z
_ ety S Patan) {eR""Io (2 l/—aY_s) -

0

— j R ™ 1, (2V aV V) dv +( (™1, ( 2V a¥x)—
h 0

- f R, ™I, (2V eV v) dv] X

0

X % R (2VBY (€ — %)) dx}ds-}-

e
fo) e-—(l+n)Y{ 2 (2 Vavz)—

+(T~
5’ Rie 2[/ a¥e)de +
0
+§[ &I, (2V a¥x) —
0

X
_f R.e®e I, (2V aYa)de]}x
0
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where

1—mn
C= — A L An).
T (n+ n)

The temperature of the first material can be found
from (1), (2), and (3) on the assumption that tg is a
known quantity. The expression for the calculation of
t; then assumes the form

Z
A o

For t;, we can obtain analogously

ty = t,exp [—mnEZ} -

A
+mn (‘(Ethr—A— ofg )exp [mnE (e —Z)|de, (16)
J n Y -
0
where
E—l4a4- 117
n

In calculating t; and t, we must know ty and 9tg/aY.
The first quantity is determined from (14), while the
second can be found by differentiation of (14) with re-
spect to Y.

Expressions (14)—(16) represent the over-all so-
lution to the problem, satisfying (1)-(3) with boundary
conditions (4) and (5). Calculations of the temperature
field in the nonmoving layer are facilitated by the
knowledge that the terms of the expressions for the
determination of 8tg/0Y and (14) in a number of cases
consist of identical functions.

It is interesting to note that unlike the single-
component layer and the two-component layer with
identical initial temperatures, the temperature of
the gas at points distant from the point of gas entry
into the layer is not a constant but a function of time.
This function is expressed by the formula

1 1 —mn
tg=1, = -
+m (1 4my (1 +n)

exp (BZ) a7

and is explained by the transfer of heat from the hot
material to the cold at any point in the layer. At the
initial instant of time at these points the temperature
of the gas is equal to the average weighted value over
the surface:
n
tg = o (18)

The approximate calculations of temperature dis-
tributions in the layer can be carried outonthebasis of
the data from the Schumann graphs [2, 3]. For this
tg and 8tg/dY should be written in the form

b = ¢ 1 _ 1l—mn BZ
E 0 14m  (U+md+tn
Zgy 14m
1+m 5‘ B[Z_m(wrn) 8] ]
— T ol Y, e de| -+
m(l + n) ; ge
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n
+[(r— ty] 8(Yy Zy) (19)
1+4n °) 8
and
ot n ot
s _ SR - S
v (1+”)[(T 7 t°> v,
Zy I+m
Lt m L

m(l+n) 5 oY,

d
i g e], (20)
where tog is the temperature of the gas in the layer,
determined from the Schumann graphs for Y, 6 =

m

= +mvandz,= TN 7600 T 1 with this
I +m

approach to the solution of the problems for a non-
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Fig. 4. Temperature distribution
with respect to gas layer height at
initial time instant calculated ac-
cording to the proposed methods
(1), usually applied methods (3)
as well as according to agglom-
rate and coke (average weight (2).

moving layer, with loss of some accuracy, it becomes
possible to reduce considerably the volume of cal-
culations. The magnitude of the error in this case, as
demonstrated by numerical analysis, for all ¥, < 6.0,
does not exceed 0. 6% in the determination of the gas
and material temperatures.

For the calculations according to the proposed method
it is necessary to have the Schumann graphs available
in addition to the data on the changes in the material
and gas temperatures in the regionof low values of
Y, and Z;, and in such quantities as would permit the
relatively exact determination of the quantity BtOg/BYO.
In this connection, the authors calculated the curves
t‘é = f(Yy, Zy) for Yy, equalto 0.1, 0.25, 0.75, 1.5, and
2.5. These curves have been plotted on the Budrin
graph [ 3] and this graph is convenient in that, first
of all, it covers both the gas and the material and,
secondly, it is constructed in semilogarithmic co-
ordinates as a result of which it encompasses a wide
range of values for Y, and Z;. This combined graph
is shown in Fig. 1.

With regard to the subject problem the coefficient
arad of mutual heat transfer must be calculated ac-
cording to the formula

C T \°
=4 _ 2 1 1 ) 21
Qrad T ( 100 ) Po1 fo (21)

in which T in °K represents the mean temperature of
the system before the flushing, i.e.,
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T = _QL (ﬁog+ Bor@1 €1 V1 4 B Yz) +973. (22)

101Ys + Py Ca Yo

The resulting solution was used to calculate the gas
and material temperatures in the charge layer loaded
into the blast furnace. The charge consists of coke and
the agglomerate. The characteristics of the charge as
applicable to contemporary blast furnaces are the fol-
lowing: the subscript 1 pertains to the coke and the
subscript 2 pertains to the agglomerate; ¢; = ¢, = 0.5;
fi=30.6 m®/m3; f, =120 m*/m?; n = 3.92; ¢; = 1.203
kJ/kg - deg; ¢, = 0. 891 kJ/kg- deg; cy =1.468 kJ/m3-deg;
v1 = 800 kg/m?; v, = 1800 kg/m3; m = 0.45; w = 5720
m/hr; o = 1152 W/m?. deg. We are considering the
case of transition to furnace operation with hot ag-
glomerate, when its initial temperature is equal to
500° C and the coke temperature is 50° C. The height
of the loaded charge portion generally is 0.5 m. The
gas temperature at the inlet to the layer is 350° C. The
coefficient of mutual heat transfer between the ag-
glomerate and the coke by definition is equal to 331
W/m?. deg.

The results from the calculation of the time vari-
ations of the temperatures for the two materials and
for the gas at the outlet from the layer are shown in
Fig. 2, The data of the drawing indicate the relatively
rapid heating of the coke and the cooling of the agglom~
erate, This shape for the curves is governed by the
intensive development of the heat-transfer processes,
primarily between the agglomerate and the coke. The
agglomerate under the given conditions plays the role
of the principal heat carrier. Within the first 16 min
of the process, approximately twice the heat is re-
ceived from the agglomerates and from the gas. More-
over, the agglomerate transfers a substantial quantity
of heat to the gas, a quantity which is larger than the
quantity of heat given off by the gas to the coke. As a
result of this relationship of heat flows, an excess of
heat arises in the gas, and this is carried out of the
layer. Nevertheless, it should be noted that the main
portion of the heat of the agglomerate (95% of its heat
content on loading) remains in the layer, which has an
extremely favorable effect on the development of the
technological process. '

There is some interest in comparingthe result from
the determination of temperatures according to the
proposed method with the method normally employed,
when the calculations are carried out for a layer of
equivalent heat capacity with an initial temperature
equal to the weighted mean. This comparison for the
outlet cross section of the layer is shown in Fig. 3,
and from this it follows that thé calculations of a single
example by either of the methods lead to fundamentally
divergent curves for the time-variations in temper-
ature. The variations in the temperature curves found
by the second method indicate the continuous cooling
of the layer by the gas, with the temperature of the
charge at no time dropping below the gas temperature
at the inlet to the layer.

At the same time, the calculations according to the
proposed method reveal a more complex pattern. First
of all, at 7 = 0 the gas is heated rapidly because of -
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the hot agglomerate and even at a distance of 0.4 m
from the inlet to the layer reaches a weighted mean
for the charge temperature, calculated from the tem-
peratures of the individual components. If the layer
exhibited a height of 5m (Y = 0. 5), the gas temper-
ature at the outlet of the layer at this instant would
exceed the initial temperature by 53.4° C (Fig. 4).
Such intense thermal action by the agglomerate on the
gas is governed by the relatively high specific surface
of the agglomerate per 1 m? of layer and its initial
temperature. Secondly, the weighted mean temper-
ature of the charge during the first half of the process
diminishes, and 5 min after the beginning of the
flushing it drops below the temperature of the gas at
the inlet to the layer. Only after the temperature
reaches the initial value as a result of the gas-flow
cooling, does the weighted mean temperature of the
charge hegin to rise as a resuit of the continuing
heating of the colder charge component, i.e., of the
coke. Consequently, the leveling of the temperatures
in the layer for the subject conditions of the example
takes place only after the "supercooling” of the charge.

Thus, calculations according to the proposed
method make it possible to establish a number of
features in the dynamics of the process involved in
the heating of a two-component charge with various
initial temperatures, and these cannot be revealed
through the conventional calculations earried out for
a charge of equivalent heat capacity.

NOTATION

tj and t, are the excess temperatures; ¢, 4., and
¥y are the instantaneous and initial temperatures of
the first material; Y is the criterion of layer height;
Z is the time criterion; H is the layer height; w is
the gas velocity; T is the time; ¢4 is the material
fraction in 1 m3 of a layer; f; is the material surface
in 1 m® of a layer; n = f,/f, is the ratio of material
surfaces; ci and ¢ are the mass heat capacity of
material and gas; yj andy are the mass of bulk of
material and gas density; m is the ratio of volume
heat capacities for materials; « is the coefficient of
heat transfer from gas to material surface; apgqisthe
coefficient of mutual heat transfer between materials
with different thermal properties and initial tem-
peratures; Cp is the radiation coefficient; ¢, is the
angle factor from second material to first; T is the
meantemperature of a system before injection; A is the
ratio of heat transfer coefficients; subscripts 1 and 2 re-
fer to the first and second materials, respectively.

SUMMARY

In the paper the system of equations (1)—(5) is
solved which describes gas heating of a fixed layer
congisting of two materials with different thermal
properties and initial temperatures. The general
solution to the problem is found as a sum (6) every
summand of which satisfies boundary conditions (7)
and (8), respectively. The equations obtained in the
final form allow prediction of the change in the tem-



JOURNAL OF ENGINEERING PHYSICS

peratures of the gas and every material (15), (16)
depending on the time and the height of the layer. An
approximate method is proposed for calculation of the
temperature distribution in the layer based on appli-
cation of the data from the Shumann graphs which are
supplemented with curves in the region of low numbers
of the layer height. The problem solution is illustrated
by an example (Fig. 2).
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